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A,

In [1] we presented a geometric theory of the area of non-
parametric surfaces. We showed that this theory is equivalent to
the analytic theory of LEBESGUE for such surfaces. In the present
paper we extend this geometric theory to triangulable parametric
surfaces. Since every surface may be thought of as a parametric
surface and as one may expect that the transition from triangulable
surfaces to non-triangulable ones may be made by a limit process,
the present theory may be considered as an introduction to a
general geometric theory of surface area.

We shall use the term parametric surface to mean the locus in
&3 of a system of simultaneous equations x=f(u,v), y=g(u,v),
z="h(u,v), these functions being defined and continuous on E, a
closed set in the uv plane consisting of the interior and the boundary
of a closed simple polygon, this set being a minimal preimage of
the given surface. We shall make use of triangular polyhedra
inseribed in the given surface and such that every face of the
polyhedra has an angle which lies between a prescribed angle ¢
and n—¢, 0<<p<m. We refer to such polyhedra as admissible
polyhedra. However, since we limit our discussions to such poly-
hedra, we shall omit the term ,,admissible”; except when we wish
to make special emphasis of it.

These polyhedra have a finite number of faces. By the area
of such a polyhedron, we mean the sum of the areas of its faces.
We shall index these faces and thus write 7T',7%,...,T", for the
faces of a polyhedron.
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Definitions:

1. A triangle T C &3 is said to be inscribed in a surface S if its
three vertices all lie in 8. A polyhedron I7 is said to be inscribed
in 8, if all of its faces (closed triangles) are inscribed in S.

2. Let II be inscribed in 8. Let 7" be a face of I1. By P,y (T),
we shall mean the orthogonal projection of 7' on the zy coordinate
plane. We define P,y (7') and Py, (T) similarly. By 8z4(7") we shall
mean a maximal connected subset of § whose orthogonal projection
on the zy plane is a subset of P,y (7") and which, moreover, has
the property that no two distinet points of Sz, (7') have identical
projection points on the zy plane. It is seen that for each inscribed
triangle 7', there may be arbitrarily associated a single 8, (7), or
a finite or even a countably infinite set of 8;4(7"). We shall denote
the union of this set by Sz,*(7). We define Sy.(7T), Sz*(T),
8y (T) and 8y *(T) similarly. We refer to Sgzo*(T) US:.*(T)
U Sy *(T) as a portion of 8§ which is subtended by the inscribed
triangle 7. By Piy(II) we shall mean Puy(T1) UPyy(L) U---
U Pyy(Tn), when the faces of I are 14,75, +-,7,. We define
P, (Il) and Py, (I) similarly. By 8;4*([I) we mean Sg*(T1) v
UBey*(Ta) U-» USy*(Th). We define 8,.*(II) and Sy *()
similarly.

3. If
a) Sxy*(ﬂ) Usz*(H) USyz*(ﬂ):S and
b) the set {Szy*(T1),8zy™*(T2), ", 8zy*(Tn)} is disjoint except for
boundary points; the set {Sz;* (1), Se*(L2), -+ Se*(Th)} is dis-
joint except for boundary points; the set {Sy.*(71),8y-* (%), -,
8y*(T's)} is disjoint except for boundary points, then we say that
11 is inscribed on the surface S. By the decomposition norm of a
polyhedron II inscribed on 8 we shall mean the greatest of the
diameters of its faces.

A surface 8 is said to be triangulable at a given point QeS8 if
for every ball S(@,¢) there exists an admissible triangle 7' C 8(Q, &)
which is inscribed in 8. A surface §'is said to be triangulable if it
is triangulable at each of its points. In this paper we shall confine
ourselves to such surfaces.

4. Let T be a face of a polyhedron /7 inscribed on S. By By (T)
we mean the area of P;u(T). We define B;,(T) and By, (T)
similarly. Let Biy(II)= Bry(T1)+ Bzy(T2)+ -+ + Bey(Th). We
define B,,(II) and By,(I1) similarly. If, for all polyhedra IT that

5%
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may be inscribed on 8, the sets {all Bg,(I1)}, {all B,.(II)} and
{all By,(II)} are each bounded, then we say that S is tame. In this
case, we designate the LUB of {all B,y (I1)} by B;y(S). We define
Bz2(8) and By,(S) similarly. We designate the sum By, (8)+
+ B2 (8) 4 Byz(8) by B and call it the base area of S.

It is easy to see [2] that if § is not tame, then its Lebesgue
area is infinite. In the sequel we shall confine ourselves to tame
triangulable surfaces.

5. Let T be a face of a polyhedron IT inscribed on 8. By D(T),
the deviation on T', we mean the LUB of the set of the acute angles
between the normal to 7' and the normals to the admissible triangles
which may be inscribed in Sgy* (T') U Sz* (1) USy* (T).

6. Let I7 be a polyhedron inscribed on 8. By D (1), the deviation
norm of II, we mean the largest of the deviations on its faces.

7. Let Q@e8. By D(Q), the deviation at ¢, we mean the GLB
of the set {D(T)}, T any admissible triangle which may be inscribed
in the intersection of § and a ball §(Q,¢), ¢ > 0. Since we are deal-
ing exclusively with triangulable surfaces, D (@) is defined at every
point of S.

8. S is said to be piecewise flai if for every ¢ >0, there exists an
admissible polyhedron I7 inscribed on 8 such that the deviation
norm of I is less than e.

It is clear that if S is piecewise flat then there exists a sequence
(I11,I13,+++) of admissible polyhedra inscribed on S8 such that the
corresponding sequence (Ni,Ng,::+) of the deviation norms con-
verges to zero. We shall call the sequence (If3,1l3,*:-) a regular
sequence of inscribed polyhedra.

9. 8 is said to be quasi-piecewise flat (gpf) if for every « >0
and every 8 >0, there exists a polyhedron II inscribed on 8 such
that ’

(a) for each of some of the faces of IT (the so-called a-regular faces
of IT), the deviation is less than « and

(b) the sum of the areas of the faces of IT on which the deviations
are not less than «, is less than §.

It is clear that if 8 is ¢pf then there exists a sequence
(ITy, IT3," - *) of polyhedra inscribed on 8 such that the corresponding
sequences (o,02,--) and (f1,f2,--*) both converge to zero. We
shall also call such a sequence (IIy,Ilz,-+-) a regular sequence of
inscribed polyhedra.
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10. Let «,B,y be the direction angles of a vector in 3. Since
cos2a |- cos2f -+ cos?yp =1, it follows that one of the coordinate
axes makes with the given vector an acute angle which is no larger

than o* =arccos 1/V3 Thus, for every plane in &3, one of the
coordinate planes makes with this plane a dihedral angle which is
less than or equal to a*.

Let 8 be qpf and (I11,I13,+++) be a regular sequence of poly-
hedra inscribed on S. Consider, in succession, the faces T'y1, Tro,
o+, Tymn of IT,. For each T, ; there exists a coordinate plane which
makes with 7,; a dihedral angle 6 < «*. As one runs through the
sequence (w1, Tno,* *, Tnma), select the faces which make with the
xy plane angles § < «*. We denote the set of these faces Fizy.
We define the sets Fynz, and F,y, similarly. One can make further
selections so that these three sets are disjoint.

Consider the sequences

Iy, Iy,

any, F(n+1)xy:"'
Fnyz: F(n+1)yz,"'
Frzes F(n+1)xz;"'

The sequence (Fuzy,Fn+1yzy, ") 18 a sequence of polyhedra
inscribed in 8, for which the angle between the z-axis and the nor-
mal to each face of each polyhedron is less than or equal to «*.
(Frap M ws1yzy,++) I8 a strongly regular sequence of inscribed
polyhedra in the sense of [1]. Similarly, (Fuzz, Fn+1)yz2,-++) and
(Fryz, Fnt1yys++) are strongly regular sequences of polyhedra
inscribed in S.

11. Given a polyhedron I7 inscribed on S, by a refinement of 1T
we mean a polyhedron I7* also inscribed on 8 such that every
vertex of I7 is also a vertex of IT*,

Given two polyhedra II; and I7; both inscribed on S, one may
construct a common refinement II* of II; and I in the following
manner:

Project on the zy plane the vertices of the set Frgy,n=—=1,2,
se N, and the vertices Fpgy,n=1,2, -+, %y, of IF. These points
on the xy plane with the addition, if necessary, of a set of well
chosen points (see [1]) on the zy plane determine an admissible
polyhedron inscribed on the portion of § which is subtended by the
union of the F, ;y of [1; and the F, 5, of I15. Project on the xz plane
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the vertices of the F, ., of I, and the vertices of the Fy., of I,
and proceed in like manner. Project on the y2z plane the vertices
of the Fpy, of JI1 and also the vertices of Fpy, of II> and proceed
in like manner. This procedure leads to the construction of a third
admissible polyhedron I7* inscribed on § which is a common
refinement of 1) and ITs.

B. We now state

Theorem 1.

Let 8 be such that D(Q)=0 for every Qe8S. Then there exists a
sequence (I11,I15, ) of polyhedra inscribed on S such that the cor-
responding sequence (N1, Ns,...) of deviation norms converges to zero.
For all such sequences of polyhedra inscribed on S, the corresponding
sequence (A1, As, ) of the polyhedral areas converges to a unique
real mumber. This is independent of the admissibility number ¢.
Proof:

Let ¢ >0 be given. For each Q&S there exists a ball S(¢,d)
such that, if 71 and 7’2 are any two triangles inscribed in § NS(Q, §),
then the dihedral angle between 7'y and T's is less than £/2. Associate
to the point @ the ball §(Q,(5/2)). Letting @ run over 8 gives us
a covering I" of 8. Since § is compact, there exists a finite sub-
covering I'* of S. Using this covering I™ we obtain a polyhedron /T
inscribed on 8 such that the deviation norm of I7 is less than e.
By considering a sequence (e1,&,°*+) which converges to zero, we
obtain a sequence (II,115,...) of polyhedra inscribed on § such that
the corresponding sequence of the deviation norms converges to
Zero.

To show that the corresponding sequence of the polyhedral
areas converges to a unique real number, we make use of two
lemmas.

Lemma 1.

Let (ITy,I15,--+) be a sequence of polyhedra inscribed on 8 such
that the corresponding sequence (N1,Nz,...) of the deviation norms
converges to zero. There exists a positive integer N such that, if
n >N, then o, <<3((7w/2)—o*). Let n >N. Let T be any face of the
Fruzy of IIy. Let k be any refinement of T'. Let 0 denote the acute angle
between the z-axis and the normal to T. Then there exists a posilive
constant M 4 v sSuch that |secf—sec 0;| < M (zyyn|6—0;|, where 0;
i8 the acute angle between the z-axis and the normal to any face T;

of k.
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Proof:

0 <o* and a*—3§((7/2)—a*) < 0; <a* 43 ((7/2)—a*). sech is
uniformly Lipschitzian on the closed interval [o*—2((7/2)—a*),
o+ ((7/2)—a™)].

Lemma 2.

Let T be any oy-regular face of the Fgzy of I, n >N, as in
Lemma 1. Let K be any refinement of T'. Let the faces of K be
T, T, and let their respective areas be Ai,dg,-++, An,. Let
azy denote the area of Pgy(T) and ay), the area of Pyy(T;). Let A
denote the area of T and let A*=A1+ Ao+ -+ App. Then
|A—A*| <agy M gy)non.

Proof’:
A* =a@yi1sech + ...+ 0@y)nmsecpy,
A=agyisecl+ -+ awy) nnsech
|A—A*| < @y |secl—secli |+ -+ + @@y nm | SeC O —s6C bOpy |
<agpni1Mepyon+ -+ @y nm M @y N O
<< “xyM(xy)NOCn-

If, in the above lemmas, we had considered a face 7 in the 7,
of II, we would have arrived at the same results with M ¢,y and
ay. instead of M ;4 n and azy, respectively. Had we considered a
face 7' in the Fy, of II, we would have arrived at similar results.
Let My denote the greatest of M uyyn, M zzyn and My, .
Corollary 1.

Let n >N as in Lemma 1. Let II,* be any refinement of II,.
Let Ay denote the sum of the areas of the faces of Il, and Ay* the
sum of the areas of the faces of II* which are subtended by the faces
of IIy. Then | Ap—An*| < My Boy.

We now proceed to the proof of Theorem 1.

Let ¢ >0 be given. There exists a positive integer N such if
n >N, then a,<<(¢/4 My B). Let n1 >N and ns >N. Let IIy* be
a common refinement of 11, and IT,,. Let Ay,, Ay, and Ax* be the
areas of I, , II,, and IIn*, respectively. Then |4, —Ax*|<
<(¢/4 My B) - My B=(¢/4). Similarly |A4n,—An*|<(¢/4). Hence
| Apy—Any| < (5/2). Thus the sequence (A1, A4s,-+-) converges to a
unique real number. It is easy to see that the sequential limit is
independent of the particular admissibility number.
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Corollary 2.

Let S be piecewise flat. Let (I11,11,---) be a regulor sequence of
polyhedra inscribed on 8. Then the corresponding sequence
(41, As,...) of the polyhedral areas converges to a unique real number.

Definition.

Let S be gpf. S is said to be sqpf (strongly quasipiecewise flat)
if there exists a sequence of polyhedra (I11,1ls,---) inscribed on §
such that, for each n, in addition to conditions 9(a) and 9(b) above,
the dihedral angle between any of the «y-irregular faces of I7, and
any refinement of such a face has an upper bound which is less
than (x/2). We shall refer to such a sequence of polyhedra as a
strongly regular sequence.

Theorem 2.

Let S be sqpf. Let (II1,115,...) be a strongly regular sequence of
polyhedra inscribed on S. Then the corresponding sequence
(A1, Ag, ) of the polyhedral areas converges to a unique real number.

Proof:

The secants of the dihedral angles referred to in the above
definition are bounded. Let m denote the upper bound of these
secants. The proof is now essentially the same as that of Theorem 1
of [1].

C.

We now describe the analytic significance of D(Q)=0, @<8.

Let 8 = F (E), E satisfying the conditions stated at the beginn-
ing of Section A.

Set D(Q)=0. Let PeFE such that @=F(P). Let P be (zo,%0)-
Consider the line #=wuy on the uv» plane. The image of this line
under the transformation F is a curve in &3. By arguments similar

to those used in the proofs of Theorems 3 and 4 of [1], one easily

oxr dx 0y 0y oz @

shows that = , @ , %Y , 2y , % , % all exist at P, and with respect
ou ov Ou ov Ou ov

to the domains of these partial derivatives, are continuous at P.

Theorem 3.

Let 8 be such that, for all QeS, D(Q)="0. Then for every sequence
of polyhedra inscribed on S, such that the corresponding sequences of
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decomposition norms and deviation norms both converge to zero, the
limit of the sequence (A1, As,...) of the polyhedral areas is given by

the Riemann double integral f V J12 4+ S22 + J32 d (u,v) where
B

Jy— oy, z) Jo— oz, x) Ty = oz, y)

T o(u,v) o(u,v) ’ o(u,v)

Proof:
At every point Pel, %,Qx—,?g,%,%, and o exist and
ou’ v ou ov ou ov
are continuous. Since F is bounded and closed, each of these
partial derivatives is uniformly continuous on Z.

Let P: (ug,vo), @ = (f (%0, 0), g (%o, Vo), # (%0, v0)). Let 8§ = F (K). The
transformation F carries the lines % = w4y and v = vy to curves on S.
Call these C, and C,, respectively. These curves have tangent lines
at F (P). Call them L, and L,, respectively. At F(P), L, and L,
have direction numbers (fy (%0, o), gu (%0, Vo), hu (40, v0)) and ( f» (vo, ¥0),
o (40,v0), ho(tg,v0)). The cosine of the angle between L, and Ly
is given by

Jufo+ gugo + Puhy .
VAd+ g2 + B2 |2+ g2 + b

cosf =

We consider decompositions of Z by right triangles with legs
parallel to the uv coordinate axes and with arbitrarily small
diameters.

Let the vertices of a typical such right triangle be (ug, o),

(o, vo + A ), (w0 + A u,v0). Let F ((uo, vo)) = (%o, Yo, 20) ;
F (uo, vo + Av) = (%o + 4»2, 940 + Ay, 20 + 4v2);
F (uo 4+ Au,v0) = (w0 + Auz,yo + duy, 20 + duz).

The area of the triangle determined by these three points on the
surface is given by

Vaa® + 4,9° +4,2° 2w’ + Zuy’ + Zuz’sing,

where g is the appropriate angle.
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Now, let ¢ >0 be given. There exists 6 >0 such that if |[Au| <<
and [Av| <4, then

Voo™ + doy” + Aoz” [ Buz’ + duy” + Auz’ sinfp—
Vie+g0+00 V52 g2+ ha? | dul|Av| sinb| < (e/B).

Consider now a sequence of decompositions (Dq,Ds, ) of B
with corresponding sequence of decompositions norms converging
to zero and the following corresponding sequences:

-Dly-DZ, s
N19N297:
21’227:;

21,2, ,, , where the X are the areas of triangles inscribed on §
and the 2’ are sums of the type

2 ]/fvz + g2 + bo? Vfuz + 9,2 + b2 sin 6. Now
vaz + g.% + hy? ]/fuz + g2 + h,2 sin 6 may be written in the form

V(fuz + 9.2 + B2) (f? + 9% + ho?) — (fufo+ Gugv -+ by By)? =
=T r IR+ T

It follows that the sequence (2i',2%',-+©) converges to
ff ]/le—I—ng + J3? dudv. Hence, the sequence (Xi,2%,---) also
E

converges to the same double integral.

We now consider the case where there exists PeZ such that
D(F (P)) >0.

Theorem 4.

Let G@={all PcE such that D(F(P))>0}. If G is of Lebesgue
measure zero, then there exists a sequence (IIy,113,---) of polyhedra
inscribed on 8 such that the corresponding sequence (A1, As,:--) of
the polyhedral areas converges to the Lebesgue area of S, whether this
be finite or infinite.

Proof:

The set G is closed and bounded and hence compact. For every

e >0 there exists a closed set H. C B, consisting of the interior
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and the boundary of a simple polygon, such that, for all points
PecE,, D(F(P))=0 and area of E — area of B¢ < e. By Theorems 2
and 3 there exists a sequence of polyhedra (II,1I1,--+) inscribed
on E; such that the corresponding sequence (4i,ds,---) of the

polyhedral areas converges to the integral f ]/J 2T+ Jg d (u,0).
Eg

This is precisely the Lebesgue area L, of 8, = F ().

Consider now a sequence (e1,¢z,---) of positive numbers con-
verging to zero.

Let ({f1i,1519,-+-) be a sequence of polyhedra inscribed on
8¢, = F (). On B—E;, there exists a finite triangulation 4; of
area less than e which contains all the points PeX for which
D(F(P)) >0. Let BEy,=E, U (£ —E, —A;). There exists a se-
quence (As1, Agg,- - -) of polyhedra inscribed on S, = F (H;,) such that
the corresponding sequence (Asi, Ass,<++) of the polyhedral areas
converges to the integral f ]/J 124 J92 4 J352 d(u,v).

Ee

Continuing this process2 indefinitely gives us a sequence of

sequences

e1: Iy, Il1s,---

A11, Age,- -+ converges to f ]/le + Jo2 -+ S d (u,v);
He,

e2: ITo1, ITs, -+ converges to fvme]—szd(u,v);...
B,

Consider now the sequence ( f , f ,) Here f < f s If
Eey Eey Fe, Hey

this sequence is unbounded, then, by the additivity of Lebesgue
area, the Lebesgue area of § is infinite.

Now suppose that the sequence ( f ) f ,) is bounded. Then

Eey Heg,y
this sequence converges to a real number. Since the Lebesgue
integral f VJ 12+ J22 4 Ja2 d(u,v) exists, the sequence ( f , f ,)
B Eé‘l E&‘z
converges to f ]/J12+J22+J32 d(u,v).
Vi
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We now wish to set up a sequence of polyhedra (I7;*,I13%,...)
inscribed on § such that the corresponding sequence (41*%, 42*,---)
converges to the Lebesgue area of S.

Ih* is built from 713 by merely adjoining a polyhedron on

E—E,, - IIy* is built from Il5»* by merely adjoining a polyhedron

on E—E,, etc. Since the sequence ( f , f ,) converges to
Hgy B,

f ]/le + Jo2 -+ J32 d (u,v), the sequence (41%,45%,---) also converges
B

to [ JTEF T2+ J5 d(u,0). Tt follows (from e of [2]) that this Limit
B
is the Lebesgue area of S.

The identical procedure followed in the case where the sequence

( f , f R ) is unbounded yields the limit co which is the Lebesgue
Hey He,
area of S.

We now consider the case where the set @ is of positive outer
Lebesgue measure. For this we have the following theorem.

Theorem 5.

If the set G of points P of E for which D(F (P)) >0 is of positive
outer Lebesgque measure, then the Lebesgue area of S is infinite.

Proof:

Consider the projection Pgy(S), Pz2(S), and Py, (S) of § on the
xy, xz, yz coordinate planes, respectively. Since the set H of
points @ of S for which D(Q) >0 is of positive outer Lebesgue
measure, it follows that on one of the three projection sets Py (S),
P, (S) and Py, (S) there is a set of points R of positive outer Lebes-
gue measure which are the projection of points @ of § for which
D(@) >0. It now follows from Theorem 9 of [1] that this portion
of § is of infinite Lebesgue area. It follows that the Lebesgue area
of § is infinite.

In this paper we have confined ourselves to triangulable para-
metric surfaces. Some surfaces are not triangulable, e. g., degenerate
surfaces such as the loci in €3 of functions & =f(u,v), y =[(u,v),
s=f(u,v). We shall give a treatment of these surfaces in a succeed-
ing article.
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